
ar
X

iv
:s

ub
m

it/
21

52
63

1 
 [

m
at

h.
C

O
] 

 4
 F

eb
 2

01
8

Some sharp results on the generalized Turán numbers

Jie Ma∗ Yu Qiu†

Abstract

For graphs T,H , let ex(n, T,H) denote the maximum number of copies of T in an
n-vertexH-free graph. In this paper we prove some sharp results on this generalization
of Turán numbers, where our focus is for the graphs T,H satisfying χ(T ) < χ(H). This
can be dated back to Erdős [8], where he generalized the celebrated Turán’s theorem by
showing that for any r ≥ m, the Turán graph Tr(n) uniquely attains ex(n,Km,Kr+1).
For general graphs H with χ(H) = r + 1 > m, Alon and Shikhelman [3] showed that
ex(n,Km, H) =

(

r

m

)

(n
r
)m + o(nm). Here we determine this error term o(nm) up to

a constant factor. We prove that ex(n,Km, H) =
(

r

m

)

(n
r
)m + biex(n,H) · Θ(nm−2),

where biex(n,H) is the Turán number of the decomposition family of H . As a special
case, we extend Erdős’ result, by showing that Tr(n) uniquely attains ex(n,Km, H)
for any edge-critical graph H . We also consider T being non-clique, where even the
simplest case seems to be intricate. Following from a more general result, we show
that for all s ≤ t, T2(n) maximizes the number of Ks,t in n-vertex triangle-free graphs

if and only if t < s+ 1

2
+
√

2s+ 1

4
.

1 Introduction

Let T and H be two fixed graphs. Throughout the paper we denote by N (G,T ) the
number of copies of T in a graph G, and let ex(n, T,H) be the maximum number of copies
of T in an n-vertex H-free graph.

The well-known Turán’s theorem [28] states that the maximum number of edges in an
n-vertex Kr+1-free graph is uniquely attained by the Turán graph Tr(n), i.e., the complete
balanced r-partite graph on n vertices. This was generalized by Erdős [8] as following.

Theorem 1.1 ([8]). For all n ≥ r ≥ m ≥ 2, the Turán graph Tr(n) uniquely attains the
maximum number of cliques Km in an n-vertex Kr+1-free graph.

Since then the function ex(n, T,H) for T 6= K2 was studied for certain pairs {T,H} (such
as [5, 19, 20, 21]; see [3] for an elaborated discussion). This was culminated in [3] by Alon
and Shikhelman, where they systematically studied the function ex(n, T,H). Among other
results, they [3] proved that for any graph H with chromatic number χ(H) = r + 1 > m,

ex(n,Km,H) = N (Tr(n),Km) + o(nm). (1)

Recently this function has been the subject of extensive research, including [2, 14, 15, 16,
17, 18, 23, 24, 25] (by no means a comprehensive list).

In this paper we determine the error term o(nm) in (1) up to a constant factor. Given
a graph H with χ(H) = r + 1, the decomposition family of H, denoted by FH , is the

∗School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R.
China. Email: jiema@ustc.edu.cn. Research partially supported by National Natural Science Foundation
of China (NSFC) grants 11501539 and 11622110.

†School of Mathematical Sciences, University of Science and Technology of China, Hefei, 230026, P.R.
China. Email: yuqiu@mail.ustc.edu.cn.

1

http://arxiv.org/submit/2152631/pdf


family of all bipartite graphs that are obtained from H by deleting r − 1 color classes in
some (r+1)-coloring of H. By biex(n,H) we denote the maximum number of edges in an
n-vertex graph which does not contain any graph in FH as a subgraph. Our main result
is as following.

Theorem 1.2. For any integer m and any graph H with χ(H) = r + 1 > m ≥ 2,

ex(n,Km,H) = N (Tr(n),Km) + biex(n,H) ·Θ(nm−2).

Since biex(n,H) = O(n2−αH ) for some αH > 0 by the classic result of Kövári, Turán
and Sós [22], this improves the error term to O(nm−αH ). A graph is edge-critical if there
exists some edge whose deletion reduces its chromatic number. Simonovits [26] proved
that for any edge-critical graph H with χ(H) = r+ 1 ≥ 3 and for sufficiently large n, the
Turán graph Tr(n) is the unique graph which attains the maximum number of edges in
an n-vertex H-free graph. It is clear that if H is edge-critical, then biex(n,H) = 0. This
enables us to obtain the following

Corollary 1.3. Let H be an edge-critical graph with χ(H) = r + 1 > m ≥ 2 and n be
sufficiently large. Then the Turán graph Tr(n) is the unique graph attaining the maximum
number of Km’s in an n-vertex H-free graph.

This can be viewed as a common generalization of the result of Erdős [8] and the result of
Simonovits [26]. To prove the upper bound of Theorem 1.2, we establish a stability result.

Theorem 1.4. Let H be a graph with χ(H) = r+1 > m ≥ 2. If G is an n-vertex H-free
graph with N (G,Km) ≥ N (Tr(n),Km) − o(nm), then G can be obtained from Tr(n) by
adding and deleting a set of o(n2) edges.

Let us prove the lower bound of Theorem 1.2 here. The construction we use can
be found in [1]. Let F ′′ be an n-vertex FH -free graph with biex(n,H) edges. Then F ′′

contains an ⌈nr ⌉-vertex subgraph F ′ with at least biex(n,H)/2r2 edges. One can further
find a bipartite subgraph F of F ′ with at least biex(n,H)/4r2 edges. Consider the graph
G obtained by inserting F into the largest part of Tr(n). Since χ(H) = r + 1 and F is
bipartite, it’s easy to see G is H-free. As each edge in F is contained in Ω(nm−2) copies of
Km in G, we see that ex(n,Km,H) ≥ N (G,Km) ≥ N (Tr(n),Km)+biex(n,H) ·Ω(nm−2).

We also consider the function ex(n, T,H) for some T not being a clique. In the next
result we maximize the number of some complete r-partite graphs T in Kr+1-free graphs.
It reveals that the relatively sizes of the parts in T will play an important role.

Theorem 1.5. (i) Let n be sufficiently large and T be any complete balanced r-partite
graph. Then the Turán graph Tr(n) is the unique n-vertex Kr+1-free graph which maxi-
mizes the number of T -copies.
(ii) Let n be sufficiently large and t ≥ s. Then T2(n) maximizes the number of copies of

Ks,t in n-vertex triangle-free graphs if and only if t < s+ 1
2 +

√

2s+ 1
4 .

This will follow from Theorem 5.1 in Section 5 in a more general setting.
The remaining of this paper is organized as follows. In Section 2 we give out some

preliminaries. In Section 3 we prove Theorem 1.4. The proofs of Theorem 1.2 and Corol-
lary 1.3 will be completed in Section 4. In Sections 5 and 6, we show Theorem 5.1, which
would imply Theorem 1.5. Section 7 contains some concluding remarks. Throughout the
paper, let [k] = {1, · · · , k} for a positive integer k.
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2 Preliminaries

In this section we will present some definitions and results needed in the subsequent
sections.

Let σ(H) be the smallest size of a color class in a proper χ(H)-coloring of a graph
H. So if H is edge-critical, then σ(H) = 1. The next proposition can be found in [1]; we
include its short proof for the completeness.

Proposition 2.1 ([1]). If H is a graph with χ(H) ≥ 3 and σ(H) ≥ 2, then biex(n,H) ≥
n− 1.

Proof. We have σ(H) ≥ 2. Then any F ∈ FH contains a matching of size 2. So K1,n−1

must be FH -free, implying that biex(n,H) ≥ e(K1,n−1) = n− 1.

Next we collect some properties on the counts of cliques in Turán graphs Tr(n).

Proposition 2.2. For any integers n ≥ r ≥ s ≥ m ≥ 2, it holds that

N (Tr(n),Km) ≥ N (Ts(n),Km) and N (Tr(n),Km) =

(

r

m

)

(n

r

)m
+O(nm−1).

Fix a graph H and consider a graph G. For each v ∈ V (G), let dG(v,H) denote the
number of copies of H in G containing the vertex v, and let δ(G,H) = minx∈V dG(x,H).

If H = Km, then we write dG(v,Km) and δ(G,Km) as d
(m)
G (v) and δ(m)(G), respectively.

Proposition 2.3. For any integers n− 1 ≥ r ≥ m ≥ 2, it holds that

δ(m)(Tr(n)) = N (Tr(n),Km)−N (Tr(n− 1),Km).

Proof. Let V1, V2, · · · , Vr be the partition classes of Tr(n). Then for any v ∈ Vi with
|Vi| = ⌈nr ⌉, we have Tr(n− 1) = Tr(n)− {v} and thus

d(m)(v) = N (Tr(n),Km)−N (Tr(n− 1),Km).

It then suffices to show that d(m)(v) = δ(m)(Tr(n)). Suppose to the contrary that d(m)(v) >
δ(m)(Tr(n)) for some v ∈ Vi. Then there exists a vertex u ∈ Vj with d(m)(u) = δ(m)(Tr(n)) <
d(m)(v). Then we must have |Vj | = ⌊nr ⌋ < ⌈nr ⌉. Thus the graph G′ obtained from Tr(n)

by deleting the vertex u is not Tr(n− 1). Since N (G′,Km) = N (Tr(n),Km)− d(m)(u), it
follows that

N (G′,Km) > N (Tr(n),Km)− d(m)(v) = N (Tr(n − 1),Km).

This contradicts Theorem 1.1, completing the proof.

The clique number of a graph G, denoted by ω(G), is the maximum size of a clique in
G. We will use a result due to Eckhoff [7].

Theorem 2.4 ([7]). Let G be an n-vertex graph with the clique number ω := ω(G) ≥
m ≥ 2. Let n1 and n2 be the unique integers satisfying that e(G) = e(Tω(n1)) + n2 and
0 ≤ n2 <

ω−1
ω n1. Then, N (G,Km) ≤ N (Tω(n1),Km) +N (Tω−1(n2),Km−1).

Note that in the setting we have n1 ≤ n. To see this, we notice that as G is Kω+1-free, it
follows by e(Tω(n1)) ≤ e(G) ≤ e(Tω(n)).

The following structural stability theorem was originally proved by Erdős and Si-
monovits [9, 10, 11, 26] (also see Füredi [13] for a new proof in the case of H being
cliques).
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Theorem 2.5 (Erdős-Simonovits Stability Theorem). Let H be a graph with χ(H) =
r + 1 ≥ 3. Then, for every ε > 0, there exist δ = δ(H, ε) > 0 and n0 = n0(H, ε) ∈ N such
that the following holds. If G is an H-free graph on n ≥ n0 vertices with e(G) ≥ e(Tr(n))−
δn2, then there exists a partition of V (G) = V1∪̇ · · · ∪̇Vr such that

∑r
i=1 e(Vi) < εn2/2.

Therefore, G can be obtained from Tr(n) by adding and deleting a set of at most εn2 edges.

A classical result of Andrásfai, Erdős and Sós [4] asserts that a Kr+1-free graph with
large minimum degree must be r-partite.

Theorem 2.6 ([4]). Let n > r ≥ 2. If G is a Kr+1-free graph on n vertices with δ(G) >
3r−4
3r−1n, then G is r-partite.

We need the celebrated Szemerédi’s regularity lemma [27]. Let X,Y be disjoint subsets
in a graph G. By G[X,Y ] we denote the bipartite subgraph of G consisting of all edges that
has one endpoint in X and another in Y ; let eG(X,Y ) (respectively, eG(X)) be the number
of edges in G[X,Y ] (respectively, in G[X]). For mutually disjoint V1, · · · , Vr ⊆ V (G),
similarly we define G[V1, · · · , Vr] to be the r-partite subgraph of G consisting of all edges
in ∪1≤i<j≤rE(G[Vi, Vj ]). The subscripts will be dropped if there is no confusion. The
density of the pair (X,Y ) is defined by d(X,Y ) := eG(X,Y )/|X||Y |. The pair (X,Y ) is
called ε-regular if |d(X,Y )− d(A,B)| < ε for all A ⊆ X and B ⊆ Y with |A| ≥ ε|X| and
|B| ≥ ε|Y |. A partition V0, · · · , Vk of V is ε-regular, if |V0| ≤ ε|V |, |V1| = · · · = |Vk|, and
all but at most εk2 of pairs (Vi, Vj) with 1 ≤ i < j ≤ k are ε-regular.

Theorem 2.7 (Regularity Lemma). For every ε > 0, there exists M = M(ε) such that
every graph of order at least ε−1 admits an ε-regular partition {V0, · · · , Vk} with ε−1 ≤
k ≤ M .

For a real d ∈ (0, 1], an ε-regular pair (X,Y ) is called (ε, d)-regular if the density
d(X,Y ) ≥ d. Given an ε-regular partition {V0, · · · , Vk} of a graph G, the (ε, d)-cluster
graph is a graph R with the vertex set V (R) = [k] and with edges ij ∈ E(R) if and only if
(Vi, Vj) is an (ε, d)-regular pair. For an integer s ≥ 1, the s-blowup of G, denoted by G(s),
is the graph obtained from G by replacing every vertex v ∈ V (G) with an independent
set Iv of size s and replacing every edge uv ∈ E(G) with the complete bipartite graph
between Iu and Iv. Let ∆(G) be the maximum degree of G.

Theorem 2.8 (Embedding Lemma; see [6]). For all d ∈ (0, 1] and ∆ ≥ 1 there exists a
γ0 > 0 with the following property. If a graph G has a γ-regular partition {V0, · · · , Vk}
with |V1| = · · · = |Vk| = ℓ and the (γ, d)-cluster graph R, where γ ≤ γ0 and ℓd∆ ≥ 2s for
some integer s ≥ 1, then any subgraph H of the s-blowup of R with ∆(H) ≤ ∆ is also a
subgraph of G.

3 A stability result on the number of cliques

In this section we prove Theorem 1.4, which is restated as the following.

Theorem 3.1. For any ε > 0, integers r ≥ m ≥ 2 and a fixed graph H with χ(H) = r+1,
there exist δ = δ(H, ε) > 0 and n0 = n0(H, ε) ∈ N such that the following holds. Let G be
an H-free graph on n ≥ n0 vertices with N (G,Km) ≥ N (Tr(n),Km)− δnm. Then G can
be obtained from Tr(n) by adding and deleting a set of at most εn2 edges.

We first establish a lemma, which says that it will be enough to find a partition of
V (G) into r parts such that the number of edges contained in a part is at most o(n2).
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Lemma 3.2. Let H,G be from Theorem 3.1 and ε ≫ η ≫ δ ≫ 1/n0.
1 If V1, · · · , Vr is a

partition of V (G) with
∑r

i=1 e(Vi) < ηn2, then e(G[V1, · · · , Vr]) > e(Tr(n))− εn2.

Proof. Let G′ = G[V1, · · · , Vr]. So ω := ω(G′) ≤ r. Every Km-copy in G either contains
some edge in ∪r

i=1E(G[Vi]) or is contained in G′. Since
∑r

i=1 e(Vi) < ηn2, the number of
Km-copies of the former type is at most ηnm. So we have N (G,Km) ≤ N (G′,Km)+ηnm.

Let n1, n2 be the unique integers satisfying that e(G′) = e(Tω(n1)) + n2 and 0 ≤ n2 <
ω−1
ω n1. If ω < m, then N (G′,Km) = 0 and thus N (G,Km) ≤ εnm, a contradiction. So

ω ≥ m. Then by Theorem 2.4,

N (G′,Km) ≤ N (Tω(n1),Km) +N (Tω−1(n2),Km−1).

We also have n2 < n1 ≤ n and thus N (Tω−1(n2),Km−1) ≤ nm−1 ≤ ηnm. Now combining
the above inequalities, we have

N (Tr(n),Km)− δnm ≤ N (G,Km) ≤ N (Tω(n1),Km) + 2ηnm,

where the first inequality is given by the conditions. Since ω ≤ r, n1 ≤ n and ε ≫ η ≫
δ ≫ 1/n, it yields ω = r and n1 > (1− ε)n. By the definition of n1, we can conclude that

e(G′) ≥ e(Tr(n1)) > e(Tr(n))− εn2.

This completes the proof of the lemma.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We are given ε > 0 and a fixed graphH with χ(H) = r+1 > m ≥ 2.
We will choose the constants appeared in this proof satisfying the following hierarchy:

ε ≫ η ≫ δ ≫ 1/k0 ≫ γ0 ≫ 1/n0, (2)

where η is from Lemma 3.2 and each of δ, k0, γ0, n0 can be expressed as functions of H, ε, η
and the previous constants in this order. Let G be an H-free graph on n ≥ n0 vertices
with

N (G,Km) ≥ N (Tr(n),Km)− δnm ≥
(

r

m

)

(n

r

)m
− 2δnm, (3)

where the last inequality follows by Proposition 2.2. We will show that

there exists a partition of V (G) = V1∪̇ · · · ∪̇Vr such that

r
∑

i=1

e(Vi) < ηn2. (4)

Note that by Lemma 3.2 and Theorem 2.5, this would imply that G can be obtained from
Tr(n) by adding and deleting a set of at most εn2 edges.

Let d := δ
2 and ∆ := ∆(H). Then there exists a real γ0 > 0 such that the conclusion of

Lemma 2.8 holds for d and ∆, and in addition, γ0 satisfies the hierarchy (2). By Theorem
2.7, there exists a γ0-regular partition A := {A0, · · · , Ak} of G with γ−1

0 ≤ k ≤ M(γ0).
Let ℓ = |A1| = · · · = |Ak|. As |A0| < γ0n, we have ℓ ≥ 1−γ0

k n ≥ 1−γ0
M(γ0)

n0 and thus we can

choose n0 so that ℓd∆ ≥ 2|V (H)|. Let R be the (γ0, d)-cluster graph of A.
We first show that the clique number ω := ω(R) is at most r. Suppose for a con-

tradiction that Kr+1 ⊆ R. Then H ⊆ Kr+1(|V (H)|) ⊆ R(|V (H)|), which, together with
Lemma 2.8, implies that H ⊆ G, a contradiction. Thus R is a Kr+1-free graph on k ≥ γ−1

0

vertices.

1Throughout this paper, the notation ε1 ≫ ε2 simply means that ε2 is a sufficiently small function of
ε1 which is needed to satisfy some inequalities in the proof.
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The following claim gives an estimation on the number of edges in R.

Claim. e(R) ≥ e(Tr(k)) − cHδ1/mk2, where cH > 0 is a constant only depending on H.

Proof of the claim. Let n1 and n2 be the unique integers satisfying e(R) = e(Tω(n1))+n2

and 0 ≤ n2 <
ω−1
ω n1. By Theorem 2.4 and its remark, n2 < n1 ≤ |V (R)| = k and

N (R,Km) ≤ N (Tω(n1),Km) +N (Tω−1(n2),Km−1).

Since ω ≤ r and N (Tω−1(n2),Km−1) ≤ km−1, by Proposition 2.2, we have

N (R,Km) ≤
(

r

m

)

(n1

r

)m
+O(km−1).

By the choices of γ0 and k, we have 1
k ≤ 1

k0
≪ δ, implying that

N (R,Km) ≤
(

r

m

)

(n1

r

)m
+ δ · km. (5)

We then estimate the number N (G,Km) of the copies of Km in G, which must belong
to one of the following five types. For those copies of Km containing some vertex in A0,
since |A0| < γ0n, these copies will contribute no more than γ0n

m to N (G,Km). For those
copies of Km containing at least two vertices in Ai for some i ∈ [k], since γ−1

0 ≤ k and
kℓ ≤ n, they will contribute at most k

(ℓ
2

)

nm−2 ≤ γ0n
m. For those copies of Km containing

some edge in non-γ0-regular pairs of A, since there are at most ℓ2 · γ0k2 such edges, there
are at most ℓ2γ0k

2nm−2 ≤ γ0n
m such copies. For those copies of Km containing some

edge in γ0-regular pairs of A with density < d, since there are at most dℓ2
(k
2

)

such edges,

there are at most dℓ2
(

k
2

)

nm−2 ≤ dnm such copies. For those copies of Km not belonging
to the above types, all of their edges must be in (γ0, d)-regular pairs of A, and thus there
are at most N (R,Km) · ℓm ≤ N (R,Km) ·

(

n
k

)m
such copies of Km. Summing up these five

types, we have, as 3γ0 + d ≤ δ, that

N (G,Km) ≤ 3γ0n
m + dnm +

N (R,Km)

km
nm ≤ δnm +

N (R,Km)

km
nm.

Together with (3), this implies that

N (R,Km)

km
≥

(

r

m

)(

1

r

)m

− 3δ. (6)

Combining with (5) and (6), we have

n1

k
≥ 1− c · δ1/m,

where the constant c > 0 depends on r and m (and thus only depends on H). By the
definition of n1, we have

e(R) ≥ e(Tr(n1)) ≥ e(Tr(k))− cHδ1/m · k2,

completing the proof of the claim.

We now choose δ = δ(η,Kr+1) and k0 = k0(η,Kr+1) according to Theorem 2.5 such
that for any Kr+1-free graph G on k ≥ k0 vertices with e(G) ≥ e(Tr(k)) − cHδ1/m · k2,
there exists a partition of V (G) = W1∪̇ · · · ∪̇Wr such that

∑r
i=1 eG(Wi) < ηk2/2.

We have seen that the cluster graph R is a Kr+1-free graph on k ≥ γ−1
0 ≥ k0 vertices.

Therefore, by the claim, there is a partition of V (R) = [k] = W1∪̇ · · · ∪̇Wr such that

r
∑

i=1

eR(Wi) < ηk2/2.

6



Then one can partition V (G) into the following r parts: V1 = (∪j∈W1
Aj) ∪ A0 and Vi =

∪j∈Wi
Aj for i ∈ {2, · · · , r}. It remains to estimate the number of edges in ∪r

i=1G[Vi], each
of which belongs to one of following five types: (Note that d = δ/2, kℓ ≤ n and 1

k ≤ γ0.)

- edges incident to some vertex in A0, the number of which is at most γ0n
2,

- edges in G[Ai] for some i ∈ [k], the number of which is at most k
(ℓ
2

)

≤ γ0n
2,

- edges in non-γ0-regular pairs of A, the number of which is at most ℓ2γ0k
2 ≤ γ0n

2,

- edges in γ0-regular pairs A with density < d, the number of which is at most dℓ2k2 ≤
δn2/2, and

- edges in some (γ0, d)-regular pair (Aj1 , Aj2) for some j1, j2 ∈ Wi and i ∈ [r], the
number of which is at most ℓ2

∑r
i=1 eR(Wi) < ℓ2ηk2/2 ≤ ηn2/2.

Combining, as 3γ0 + δ/2 + η/2 < η, we have that
∑r

i=1 e(Vi) < ηn2. This proves (4) and
thus completes the proof of Theorem 3.1.

4 Counting cliques

This section will be devoted to the proof of Theorem 1.2 (from which Corollary 1.3 will
also follow). We have established the lower bound. So it suffices to show for sufficiently
large n, if G is an n-vertex H-free graph with

N (G,Km) ≥ N (Tr(n),Km), (7)

then
N (G,Km) ≤ N (Tr(n),Km) + biex(n,H) · O(nm−2). (8)

We will proceed with a sequence of claims.

Claim 4.1. We may assume an additional condition for G that δ(m)(G) ≥ δ(m)(Tr(n)).

Proof. Assume n ≥ n0 +
(n0

m

)

for some sufficiently large n0. Let Gn := G. If δ(m)(Gn) ≥
δ(m)(Tr(n)), then there is nothing to show. So we may assume there exists some vertex

vn ∈ V (Gn) with d
(m)
Gn

(vn) ≤ δ(m)(Tr(n))−1. Let Gn−1 := Gn−{vn}. Then, by Proposition

2.3, we have N (Gn−1,Km) = N (Gn,Km)− d
(m)
Gn

(vn) ≥ N (Tr(n),Km)− δ(m)(Tr(n))+1 =
N (Tr(n− 1),Km) + 1.

We then iteratively define graphs Gj satisfying N (Gj ,Km) ≥ N (Tr(j),Km) + (n− j)

as following. Assume that Gj is defined. If there exists some vj ∈ Gj with d
(m)
Gj

(vj) ≤
δ(m)(Tr(j)) − 1, then let Gj−1 := Gj − {vj} and it also follows that N (Gj−1,Km) =

N (Gj ,Km)− d
(m)
Gj

(vj) ≥ N (Tr(j − 1),Km) + (n− j + 1); otherwise, terminate.
Let Gt be the graph for which the above iteration terminates. So Gt has exactly t

vertices and δm(Gt) ≥ δm(Tr(t)). Suppose that t < n0. Then we have

(

n0

m

)

>

(

t

m

)

≥ N (Gt,Km) ≥ N (Tr(t),Km) + (n− t) ≥ n− n0 ≥
(

n0

m

)

,

a contradiction. So we have n ≥ |V (Gt)| = t ≥ n0.
Now suppose that under the additional condition δm(Gt) ≥ δm(Tr(t)), one can derive

from the inequality N (Gt,Km) ≥ N (Tr(t),Km) (for t ≥ n0) that (8) holds for Gt, i.e.,

7



N (Gt,Km) ≤ N (Tr(t),Km) + biex(t,H) · O(tm−2). Then we would infer that (8) also
holds for G, by the following

N (G,Km) = N (Gt,Km) +

n
∑

j=t+1

d
(m)
Gj

(vj)

≤ N (Tr(t),Km) + biex(t,H) ·O(tm−2) +
n
∑

j=t+1

δ(m)(Tr(j))

= N (Tr(n),Km) + biex(n,H) · O(nm−2),

where the last equality follows from Proposition 2.3. This proves Claim 4.1.

Choose ε > 0 to be sufficiently small. Let V1, · · · , Vr be a partition of V (G) such that
∑r

i=1 e(Vi) is minimized. In view of (7), by Theorem 1.4, we have that

r
∑

i=1

e(Vi) < εn2. (9)

By Lemma 3.2, there exists some γ = γ(ε) with limε→0 γ(ε) = 0 such that

e(G[V1, · · · , Vr]) > e(Tr(n))− γn2. (10)

Let β = β(ε) := max(2
√
ε, 3
√
4γ). We may assume that ε is small so that β < (r − 1)−2.

Let Bi = {x ∈ Vi : |N(v) ∩ Vi| > βn} for i ∈ [r]. Let B = ∪r
i=1Bi and let Ui = Vi \ B.

Because of (9) and β ≥ 2
√
ε, we get

|B| < 2εn2

βn
≤ β

2
n.

The next claim further bounds the size of B from above by an absolute constant. Recall
the definition of σ(H) in Section 2.

Claim 4.2. There exists some positive constant K depending only on β and H such that
|B| ≤ K(σ(H)− 1). In particular, if H is edge-critical, then B = ∅.
Proof. Note that V1, · · · , Vr is a partition of V (G) such that

∑r
i=1 e(Vi) is minimized. So

for any v ∈ Vi and j 6= i, we have |N(v) ∩ Vj | ≥ |N(v) ∩ Vi|. This together with the
definition of B show that for any v ∈ B and i ∈ [r], |N(v) ∩ Vi| ≥ βn. Since Ui = Vi \ B
and |B| < β

2n, it follows that |N(v) ∩ Ui| > β
2n.

Consider an arbitrarily but fixed v ∈ B. Let Si ⊂ N(v) ∩ Ui be a set of size β
2n for

each i ∈ [r]. The inequality (10) tells that G[V1, · · · , Vr]) misses at most γn2 edges, so for
all i 6= j we have e(G[Si, Sj ]) > |Si||Sj |− γn2 ≥ (1−β)β2n2/4. (Here, we used β ≥ 3

√
4γ.)

Thus the edge-density of G[∪r
i=1Si] is at least

(r
2

)

(1− β)β2n2/4
(rβn/2

2

)
≥ r − 1

r
(1− β) >

r − 2

r − 1
,

where the last inequality holds because of that β < (r− 1)−2. So we can apply the super-
saturation theorem of Erdős and Simonovits [12] and conclude that the graph G[∪r

i=1Si]
contains at least cnbr copies of the b-blowupKr(b), where b := |V (H)| and c := c(β,H) > 0
is a constant.

Let X be the set of all copies of Kr(b) in G[∪r
i=1Si]. So |X | ≤ nbr. We then define

an auxiliary bipartite graph G with the bipartition (X , B), where R ∈ X and v ∈ B are
adjacent in G if and only if V (R) ⊆ NG(v). By the previous paragraph, we see dG(v) ≥ cnbr

for all v ∈ B. We point out that dG(R) ≤ σ(H) − 1 for all R ∈ X , as otherwise it will
lead to an H-copy by the definition of σ(H). Therefore, |B|cnbr ≤ e(G) ≤ (σ(H)−1) ·nbr.
This shows that |B| ≤ K(σ(H)− 1), where K = 1/c.
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Claim 4.3. There exists some θ = θ(ε) with limε→0 θ(ε) = 0 such that ||Vi| − n
r | < θn for

all i ∈ [r].

Proof. By symmetry, it suffices for us to prove for i = 1. Let p := |V1|/n ∈ [0, 1]. Let
KV1,··· ,Vr be the complete r-partite graph with parts V1, · · · , Vr. Each Km-copy in G either
contains some edge in ∪r

i=1E(G[Vi]) or is contained in G[V1, · · · , Vr] ⊆ KV1,··· ,Vr . By (7)
and (9), it follows that

N (Tr(n),Km) ≤ N (G,Km) ≤ εn2 · nm−2 +N (KV1,··· ,Vr ,Km)

Since Km-copy in KV1,··· ,Vr either contains exactly one vertex in V1 or is contained in
KV2,··· ,Vr , we have

N (KV1,··· ,Vr ,Km) ≤ |V1| · N (KV2,··· ,Vr ,Km−1) +N (KV2,··· ,Vr ,Km).

By Theorem 1.1, we also have that for j ∈ {m− 1,m}

N (KV2,··· ,Vr ,Kj) ≤ N (Tr−1(n− |V1|),Kj).

Putting the above inequalities together, it holds that

N (Tr(n),Km) ≤ εnm + |V1| · N (Tr−1(n− |V1|),Km−1) +N (Tr−1(n − |V1|),Km).

By Proposition 2.2, this yields

(

r

m

)

(n

r

)m
≤ pn

(

r − 1

m− 1

)(

(1− p)n

r − 1

)m−1

+

(

r − 1

m

)(

(1− p)n

r − 1

)m

+ 2εnm.

After some simplifications, it gives that

f(p) := m(r − 1)p(1− p)m−1 + (r −m)(1− p)m − r

(

1− 1

r

)m

≥ −2ε.

One can easily verify that f(p) increases in [0, 1r ] and decreases in [1r , 1], where f(1r ) = 0.
So by the continuity of f , there exists some θ = θ(ε) with limε→0 θ(ε) = 0 such that
|p − 1

r | < θ. This proves Claim 4.3.

Claim 4.4. There exists η = η(ε) with limε→0 η(ε) = 0 such that

|N(v) ∩ Uj| >
(

1

r
− η

)

n

for every v ∈ Ui and every j 6= i.

Proof. Fix a vertex v ∈ Ui and some j 6= i. We will show this claim by estimating d
(m)
G (v).

First let us estimate the number of Km-copies containing v in G[V1, · · · , Vr]. Such
copies may contain some vertex in Vj or not. By Claim 4.3, we have |Vk| < n

r + θn for
each k ∈ [r]. So the number of such copies containing some vertex in Vj is at most

|N(v) ∩ Vj | ·
(

r − 2

m− 2

)

(n

r
+ θn

)m−2
,

and the number of such copies containing no vertex in Vj is at most

(

r − 2

m− 1

)

(n

r
+ θn

)m−1
.
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For each copy of Km in G that contains v, if it is not in G[V1, · · · , Vr], then it contains
either some neighbor of v in Vi or an edge in G[Vk] for some k 6= i. The number of Km-
copies of the former kind is at most |N(v) ∩ Vi| · nm−2 ≤ βnm−1, and in view of (9), the
number of the latter kind is at most εn2 · nm−3 ≤ εnm−1. This shows that

d
(m)
G (v) ≤ (β + ε)nm−1 + |N(v) ∩ Vj | ·

(

r − 2

m− 2

)

(n

r
+ θn

)m−2
+

(

r − 2

m− 1

)

(n

r
+ θn

)m−1
.

Also by Claim 4.1, we may assume that

δ(m)(G) ≥ δ(m)(Tr(n)) =

(

r − 1

m− 1

)

(n

r

)m−1
+O(nm−2).

Putting the above two inequalities together, we have

(

r − 1

m− 1

)

1

rm−1
≤ β + 2ε+

|N(v) ∩ Vj|
n

(

r − 2

m− 2

)(

1

r
+ θ

)m−2

+

(

r − 2

m− 1

)(

1

r
+ θ

)m−1

.

It then follows that there exists some ξ = ξ(β, ε, θ) with limβ,ε,θ→0 ξ(β, ε, θ) = 0 such that

|N(v) ∩ Vj | > (1r − ξ)n. Finally, recall that |Bj| ≤ |B| < β
2n (or use Claim 4.2 instead).

Thus by letting η(ε) := ξ(β, ε, θ)+ β
2 , we get that |N(v)∩Uj | ≥ |N(v)∩Vj |−|Bj | > (1r−η)n,

completing the proof of Claim 4.4.

Claim 4.5. For every i ∈ [r], e(Ui) ≤ biex(n,H). In particular, if H is edge-critical, then
U1, · · · , Ur are all independent sets.

Proof. Suppose for a contradiction that say, e(U1) > biex(n,H). Then G[U1] contains
some F ∈ FH . Let b = |V (H)|. We assert that we can find X2, · · · ,Xr with Xi ⊂ Ui and
|Xi| = b such that G[V (F ),X2, · · · ,Xr] is a complete r-partite graph. If so, then clearly
G[V (F ) ∪X2 ∪ · · · ∪Xr] contains a copy of H, a contradiction.

To do this, suppose inductively that for some i ∈ {1, ..., r − 1}, we have obtained
X2, · · · ,Xi such that G[V (F ),X2, · · · ,Xi] is complete i-partite. (For i = 1, we just view
it as the set V (F ).) Then the number of common neighbors of Li := V (F )∪X2 ∪ · · · ∪Xi

in Ui+1 is at least




∑

v∈Li

|N(v) ∩ Ui+1|



− (|Li| − 1)|Ui+1| > |Li|(
1

r
− η)n − (|Li| − 1)(

1

r
+ θ)n

≥
(

1

r
− |Li|(η + θ)

)

· n ≥
(

1

r
− br(η + θ)

)

· n.

Here, the first inequality follows from Claim 4.4 and the fact |Ui+1| ≤ |Vi+1| < (1r +θ)n (by
Claim 4.3), and the last inequality holds as |Li| ≤ bi ≤ br. Since η and θ are sufficiently
small and n is sufficiently large, we can find the desired set Xi+1 ⊂ Ui+1 with |Xi+1| = b,
proving Claim 4.5.

We are ready to prove the upper bound (8) of N (G,Km). It is clear that every copy
of Km in G either is contained in G[U1, · · · , Ur], or contains some edge in ∪r

i=1E(G[Ui]),
or contains some vertex in B. Since G[U1, · · · , Ur] is Kr+1-free, by Theorem 1.1, we have

N (G[U1, · · · , Ur],Km) ≤ N (Tr(n),Km).

Since
∑r

i=1 e(Ui) ≤ r·biex(n,H) (by Claim 4.5) and every edge can be contained in at most
nm−2 copies of Km, the number of copies of Km that contain some edge in ∪r

i=1E(G[Ui])
is at most

r · biex(n,H) · nm−2 = biex(n,H) · O(nm−2).
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Lastly, since each vertex can be contained at most nm−1 copies of Km, the number of
copies of Km that contain some vertex in B is at most

|B| · nm−1 ≤ K(σ(H)− 1) · nm−1 ≤ biex(n,H) · O(nm−2),

where the first inequality follows by Claim 4.2 and the last inequality holds because of
Proposition 2.1. Putting the above together, we obtain the desired upper bound

N (G,Km) ≤ N (Tr(n),Km) + biex(n,H) · O(nm−2).

The proof of Theorem 1.2 is completed.
Now suppose H is edge-critical. By Claim 4.2, B = ∅ and so V (G) = U1∪̇ · · · ∪̇Ur. By

Claim 4.5, we see that U1, · · · , Ur are all independent sets, implying that G is r-partite
and thus Kr+1-free. Hence by Theorem 1.1, it holds that N (G,Km) ≤ N (Tr(n),Km),
with the equality holds if and only if G = Tr(n). This proves Corollary 1.3.

5 Counting complete multipartite graphs

Throughout this section let r ≥ 2 and t ≥ s be fixed integers. Let K
(r)
s,t denote the complete

r-partite graph with one part of size t and the other r− 1 parts of size s. It is easy to see
that Theorem 1.5 will follow from the coming result.

Theorem 5.1. Let r ≥ 2 and t ≥ s be positive integers. Then the following hold:

(a) If t < s + 1
2 +

√

2s+ 1
4 , then for sufficiently large n, the unique n-vertex Kr+1-free

graph which maximizes the number of copies of K
(r)
s,t is the Turán graph Tr(n).

(b) If t = s+ 1
2+

√

2s + 1
4 , then ex(n,K

(r)
s,t ,Kr+1) = (1+o(1))·N (Tr(n),K

(r)
s,t ). Moreover,

in case of r = 2, ex(n,Ks,t,K3) ≥ N (T2(n),Ks,t) + Ω(ns+t−2).

(c) If t > s + 1
2 +

√

rs+ 1
4 , then there exists a constant c = c(r, s, t) > 0 such that

ex(n,K
(r)
s,t ,Kr+1) ≥ (1 + c) · N (Tr(n),K

(r)
s,t ).

In this section we will prove Theorem 5.1, by assuming Lemmas 5.2 and 5.3 (see below;
their proofs will be postponed to the next section). Before introducing the lemmas, we
will need to give some notations.

Definition 5.1. For integers a ≤ n, let Gr
a,n be the complete r-partite graph G on n

vertices with parts V1, V2, ..., Vr such that G[V2 ∪ · · · ∪ Vr] = Tr−1(a). Let Fr,s,t(a, n) be the

number of copies of K
(r)
s,t in Gr

a,n each of which contains a fixed vertex in V1.

Let λs,t be
1
2 if s = t and 1 otherwise. Then Fr,s,t(a, n) can be expressed as

λs,t ·
[(

n− 1− a

s− 1

)

· N (Tr−1(a),K
(r−1)
s,t ) +

(

n− 1− a

t− 1

)

· N (Tr−1(a),K
(r−1)
s,s )

]

. (11)

In case that a = ⌊ r−1
r n⌋, we see that Gr

a,n = Tr(n) and Gr
a,n\{v} = Tr(n − 1) for any

v ∈ V1. Hence we have

N (Tr(n),K
(r)
s,t )−N (Tr(n− 1),K

(r)
s,t ) = Fr,s,t

(⌊

r − 1

r
n

⌋

, n

)

. (12)

Lemma 5.2. (i) If s ≤ t < s + 1
2 +

√

2s+ 1
4 , then the following holds for sufficiently

large n. If Fr,s,t(⌊ r−1
r n⌋, n) ≤ Fr,s,t(d, n), then d ≥ ⌊ r−1

r n⌋.
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(ii) If t = s+ 1
2 +

√

2s+ 1
4 , then for any ε > 0, there exists a real η > 0 such that the fol-

lowing holds for sufficiently large n. If Fr,s,t(⌊ r−1
r n⌋, n) ≤ Fr,s,t(d, n)+ ηn(r−1)s+t−1,

then d ≥ r−1
r n− εn.

Lemma 5.3. For s ≤ t ≤ s + 1
2 +

√

2s + 1
4 and sufficiently large n, let G be an n-vertex

r-partite graph which maximizes the number of copies of K
(r)
s,t . Then G is a complete

r-partite graph with each part of size n
r + o(n). Moreover, if t < s + 1

2 +
√

2s+ 1
4 , then

G = Tr(n) is unique.

Now we are in a position to prove Theorem 5.1.

Proof of Theorem 5.1 (Assuming Lemmas 5.2 and 5.3). We first prove the “moreover” part
of (b) and the case (c), by indicating that some complete r-partite graphs have more

copies of K
(r)
s,t than the Turán graphs Tr(n). For the “moreover” part of (b), we have

t = s + 1
2 +

√

2s + 1
4 and r = 2. By some tedious but straightforward calculations, one

can show for x = Θ(
√
n) that

N (Kn
2
−x,n

2
+x,Ks,t)−N (T2(n),Ks,t) = 2st

(n

2

)s+t−3
x2 − 2st

3

(n

2

)s+t−4
x4 + o(ns+t−2).

By letting x =
√
3n
2 + o(

√
n), the desired inequality follows by

ex(n,Ks,t,K3) ≥ N (Kn
2
−x,n

2
+x,Ks,t) ≥ N (T2(n),Ks,t) +

(

3st

2
+ o(1)

)

(n

2

)s+t−2
.

For the case (c), let t > s+ 1
2 +

√

rs+ 1
4 and consider Kx1n,··· ,xrn, where xi = x ∈ (0, 1

r−1)

for i ∈ [r − 1] and xr = 1− (r − 1)x. It is not hard to see that

N (Kx1n,··· ,xrn,K
(r)
s,t ) =

r
∑

i=1

(

xin

t

)

∏

j 6=i

(

xjn

s

)

=
eF (x) + o(1)

t!(s!)r−1
n(r−1)s+t,

where F (x) = s log[xr−1 − (r − 1)xr] + log[(r − 1)xt−s + (1− (r − 1)x)t−s]. In particular,

N (Tr(n),K
(r)
s,t ) =

eF ( 1
r
) + o(1)

t!(s!)r−1
n(r−1)s+t.

Therefore to prove the case (c), it suffices to show that 1
r is not a maximum point of F (x)

in the interval (0, 1
r−1); and further, it is enough to show F ′′(1r ) > 0. This indeed is the

case, as by some routine calculations one can show that

F ′′
(

1

r

)

= r2(r − 1) · [(t− s)2 − t− s(r − 1)] > 0,

where the inequality holds by r ≥ 2 and t > s+ 1
2 +

√

rs+ 1
4 .

In the rest of the proof we assume s ≤ t ≤ s+ 1
2 +

√

2s+ 1
4 . We will apply induction

on r to prove the remaining statements of Theorem 5.1, namely for sufficiently large n,

(a). Tr(n) uniquely attains the maximum ex(n,K
(r)
s,t ,Kr+1) if s ≤ t < s+ 1

2 +
√

2s+ 1
4 ;

(b). ex(n,K
(r)
s,t ,Kr+1) = N (Tr(n),K

(r)
s,t ) + o(n(r−1)s+t) if t = s+ 1

2 +
√

2s + 1
4 .
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For the case r = 1, we view K
(r)
s,t and Tr(n) as graphs with empty edge set on t vertices

and n vertices respectively, and then items (a) and (b) holds trivially. Now suppose that
these two items hold for the case r − 1.

Let n be sufficiently large, ε > 0 be sufficiently small, and η be obtained from Lemma
5.2 (ii) such that r−1

r − ε > 3r−4
3r−1 . Let G be an n-vertex Kr+1-free graph which maximizes

the number of copies of K
(r)
s,t . So we have

N (G,K
(r)
s,t ) = ex(n,K

(r)
s,t ,Kr+1) ≥ N (Tr(n),K

(r)
s,t ). (13)

We then recursively define a sequence of graphs Gi’s as following. Let Gn := G. For

i ≤ n, if there is some vertex vi ∈ V (Gi) with dGi
(vi,K

(r)
s,t ) ≤ δi − 1, where

δi := N (Tr(i),K
(r)
s,t )−N (Tr(i− 1),K

(r)
s,t ),

then let Gi−1 = Gi\{vi} and continue; otherwise, terminate. Suppose this recursive

process stops at H := Gℓ for some ℓ ≤ n. Then H has ℓ vertices with δ(H,K
(r)
s,t ) ≥ δℓ and

N (H,K
(r)
s,t ) = N (G,K

(r)
s,t )−

n
∑

i=ℓ+1

dGi
(vi,K

(r)
s,t ) (14)

≥ N (Tr(n),K
(r)
s,t )−

n
∑

i=ℓ+1

δi + (n− ℓ) = N (Tr(ℓ),K
(r)
s,t ) + (n− ℓ). (15)

Assume that n ≥ n0 + n
(r−1)s+t
0 for some sufficiently large n0. We claim that ℓ ≥ n0; as

otherwise n0 > ℓ, from which it follows that

n
(r−1)s+t
0 > N (H,K

(r)
s,t ) ≥ N (Tr(ℓ),K

(r)
s,t ) + (n − ℓ) ≥ n− n0 ≥ n

(r−1)s+t
0 ,

a contradiction.
Let v ∈ V (H) have minimum degree dv in H. We claim that dH(v,K

(r)
s,t ) is at most

λs,t ·
[(

ℓ− 1− dv
s− 1

)

· ex(dv ,K(r−1)
s,t ,Kr) +

(

ℓ− 1− dv
t− 1

)

· ex(dv ,K(r−1)
s,s ,Kr)

]

. (16)

Note that as H is Kr+1-free, H[NH(v)] is Kr-free. Every K
(r)
s,t -copy T in H containing

v must contain either (r − 2)s + t vertices in NH(v) which induce a copy of K
(r−1)
s,t , or

(r − 1)s vertices in NH(v) which induce a copy of K
(r−1)
s,s . Moreover, if the former case

occurs, then the other s − 1 vertices of T must be in V (H)\(NH(v) ∪ {v}), as otherwise
it will lead to a copy of Kr in H[NH(v)]; similarly, if the later one occurs, then the other
t− 1 vertices of T must be in V (H)\(NH (v) ∪ {v}). This justifies the claim.

Let µ = 0 if s ≤ t < s+ 1
2 +

√

2s + 1
4 , and µ = 1 otherwise. By (12), we have

dH(v,K
(r)
s,t ) ≥ δ(H,K

(r)
s,t ) ≥ δℓ = Fr,s,t

(⌊

r − 1

r
ℓ

⌋

, ℓ

)

≥ Ω(ℓ(r−1)s+t−1). (17)

Then by (16), ℓs−1d
(r−2)s+t
v + ℓt−1d

(r−1)s
v ≥ dH(v,K

(r)
s,t ) ≥ Ω(ℓ(r−1)s+t−1), which implies

that dv = Ω(ℓ) = Ω(n0) is sufficiently large. By our induction, it follows that

ex(dv ,K
(r−1)
s,t ,Kr) = N (Tr−1(dv),K

(r−1)
s,t ) + µ · o(d(r−2)s+t−1

v ).

This, together with (16) and (11) (i.e., the definition of Fr,s,t), implies that

dH(v,K
(r)
s,t ) ≤ Fr,s,t(dv, ℓ) + µ · o(ℓ(r−1)s+t−1).
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By (17), for sufficiently large ℓ (as ℓ ≥ n0), we have

Fr,s,t

(⌊

r − 1

r
ℓ

⌋

, ℓ

)

≤ Fr,s,t(dv, ℓ) + µ · η · ℓ(r−1)s+t−1,

where η is obtained from Lemma 5.2 (ii). Applying Lemma 5.2, we obtain that the
minimum degree δ(H) = dv ≥ ( r−1

r − ε)ℓ > 3r−4
3r−1ℓ. As H is an ℓ-vertex Kr+1-free graph,

by Theorem 2.6 we see that H is r-partite. Then Lemma 5.3 shows that

N (H,K
(r)
s,t ) ≤ N (Tr(ℓ),K

(r)
s,t ) + µ · o(ℓ(r−1)s+t),

where the equality holds for µ = 0 if and only if H = Tr(ℓ). By (13) and (14), we have

N (Tr(n),K
(r)
s,t ) ≤ N (G,K

(r)
s,t ) = N (H,K

(r)
s,t ) +

n
∑

i=ℓ+1

dGi
(vi,K

(r)
s,t )

≤ N (Tr(ℓ),K
(r)
s,t ) +

n
∑

i=ℓ+1

δi + µ · o(ℓ(r−1)s+t)− (n− ℓ)

= N (Tr(n),K
(r)
s,t ) + µ · o(ℓ(r−1)s+t)− (n− ℓ).

If s ≤ t < s+ 1
2 +

√

2s+ 1
4 (that is, µ = 0), then it is easy to see that n = ℓ, G = H and

N (H,K
(r)
s,t ) = N (Tr(n),K

(r)
s,t ); and in this case Lemma 5.3 also shows that G = H = Tr(n)

is unique. For the case t = s + 1
2 +

√

2s+ 1
4 , it is also easy to see that N (G,K

(r)
s,t ) =

N (Tr(n),K
(r)
s,t ) + o(n(r−1)s+t). The proof of Theorem 5.1 is completed.

6 Two Lemmas

Here we prove Lemmas 5.2 and 5.3. Throughout this section, let r, s, t be fixed integers

such that r ≥ 2 and s ≤ t ≤ s+ 1
2 +

√

2s + 1
4 , and let n be sufficiently large.

6.1 Proof of Lemma 5.2

Recall the definition of λs,t, and let λ̃s,t,r = r− 1 if t 6= s and 1 otherwise. One can easily
obtain the following.

Proposition 6.1. N (Tr(n),K
(r)
s,t ) = (1 + o(1))

λ̃s,t,r+1

(s!)r−1t!
(nr )

(r−1)s+t.

Proposition 6.2. Fr,s,t

(⌊

r−1
r n

⌋

, n
)

= (1 + o(1))
λs,t(sλ̃s,t,r+t)

(s!)r−1t!

(

n
r

)(r−1)s+t−1
.

From now on we will often write F (a) instead of Fr,s,t(a, n) for short.

Proposition 6.3. There exist η0 > 0 and γ > 0 such that the following holds. For any
η ∈ [0, η0), if F (⌊ r−1

r n⌋) ≤ F (d) + ηn(r−1)s+t−1, then d ≥ γn.

Proof. By Proposition 6.2, there is some c > 0 such that F
(⌊

r−1
r n

⌋)

> cn(r−1)s+t−1.

Let η0 := c
2 . Suppose 0 ≤ η ≤ η0 and F (⌊ r−1

r n⌋) ≤ F (d) + ηn(r−1)s+t−1. Then by the
definition of F , we have that

ns−1d(r−2)s+t + nt−1d(r−1)s ≥ F (d) ≥ F

(⌊

r − 1

r
n

⌋)

− ηn(r−1)s+t−1 ≥ c

2
n(r−1)s+t−1.

This yields some γ = γ(r, s, t) > 0 such that d ≥ γn.
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The following two propositions assert some properties on F (a). We leave the technical
details of their proofs in the Appendix A.

Proposition 6.4. For any γ, ε > 0 with γ + ε < r−1
r , the following hold.

(i) If t < s+ 1
2 +

√

2s+ 1
4 , then F (a+ 1) > F (a) for all integers a ∈ [γn, ⌊ r−1

r n⌋].

(ii) If t = s+ 1
2 +

√

2s+ 1
4 , then F (a+ 1) > F (a) for all integers a ∈ [γn, ( r−1

r − ε)n].

Proposition 6.5. For any ε ∈ (0, r−1
r ), there exists ξ = ξ(ε, r, s, t) > 0 such that

F (⌊ r−1
r n⌋)− F (⌊( r−1

r − ε)n⌋) > ξn(r−1)s+t−1.

We have collected all propositions needed for the proof of Lemma 5.2.

Proof of Lemma 5.2. First we consider the case (i) that s ≤ t < s+ 1
2 +

√

2s+ 1
4 . Suppose

that F
(⌊

r−1
r n

⌋)

≤ F (d) (and n is assumed to be sufficiently large throughout this section).
By Proposition 6.3, there exists some γ > 0 such that d ≥ γn. We may assume γ < r−1

r ,
as otherwise we are done. Then by Proposition 6.4 (i), F

(⌊

r−1
r n

⌋)

is the unique maximum
of F (a) in [γn, ⌊ r−1

r n⌋]. This yields that d ≥ ⌊ r−1
r n⌋.

Now we consider the case (ii) that t = s + 1
2 +

√

2s+ 1
4 . For any ε > 0, let η0 and ξ

be obtained from Propositions 6.3 and 6.5 respectively. Let η := min{η0, ξ} > 0 and write
v = (r − 1)s + t − 1. Now suppose that F

(⌊

r−1
r n

⌋)

≤ F (d) + ηnv. Our goal is to show
d ≥ r−1

r n− εn.
Suppose to the contrary that d < r−1

r n− εn. By Lemma 6.3, there exists some γ > 0
such that d ≥ γn. So γn ≤ d < ( r−1

r − ε)n. Putting Proposition 6.4 (ii) and Proposition
6.5 together, we have F (d) ≤ F

(⌊

( r−1
r − ε)n

⌋)

< F
(⌊

r−1
r n

⌋)

− ξnv ≤ F
(⌊

r−1
r n

⌋)

− ηnv,
which is a contradiction to the assumption. This proves Lemma 5.2.

6.2 Proof of Lemma 5.3

Let G be an n-vertex r-partite graph with the maximum number of K
(r)
s,t -copies. It is clear

that G must be a complete r-partite graph. So we may assume that G = Ka1,··· ,ar with

n = a1 + ...+ ar and ar ≥ · · · ≥ a1 ≥ s (where a1 ≥ s is because N (G,K
(r)
s,t ) ≥ 1).

For any vector ~x = (x1, ..., xr) with positive integers xi’s, write K~x = Kx1,··· ,xr and let

g(~x) =

r
∑

i=1

(

xi
t

)

∏

j 6=i

(

xj
s

)

, ∗~x = (x1+1, x2, ..., xr−1, xr−1) , and ∆g(~x) = g(∗~x)−g(~x) .

Therefore, if t 6= s, then g(~x) = N (K~x,K
(r)
s,t ); otherwise, g(~x) = rN (K~x,K

(r)
s,t ).

We present a sequence of propositions as following.

Proposition 6.6. Let ~a = (a1, ..., ar). Then we have ∆g(~a) ≤ 0.

Proof. This clearly follows by the maximality of N (G,K
(r)
s,t ).

Proposition 6.7. There exists some γ > 0 such that a1 ≥ γn.

Proof. We have N (Tr(n),K
(r)
s,t ) ≤ N (G,K

(r)
s,t ) ≤ N (Ka1,n,...,n,K

(r)
s,t ). Thus there exists

some c > 0 such that cn(r−1)s+t ≤ N (G,K
(r)
s,t ) ≤ (r − 1)as1n

(r−2)s+t + at1n
(r−1)s. This

implies that a1 ≥ γn for some constant γ > 0.

For a vector ~x = (x1, ..., xr), let h(~x) = xrt!/s!
∏r

i=1

(xi

s

)

.
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Proposition 6.8. Let q = t− s. The product h(~a)∆g(~a) is equal to

sar − t(a1 + 1)

a1 + 1− s
(ar − s)q +

tar − s(a1 + 1)

a1 + 1− t
(a1 − s)q +

s(ar − a1 − 1)

a1 + 1− s

r−1
∑

i=2

(ai − s)q.

Proof. The proof is straightforward and we just give some computations here. By routine
calculations, we have ∆g(~a) = g(∗~a)− g(~a) = A ·∏r−1

i=2

(ai
s

)

+B ·∏j 6=1,i,r

(aj
s

)

, where

A =

(

a1 + 1

s

)(

ar − 1

t

)

+

(

a1 + 1

t

)(

ar − 1

s

)

−
(

a1
s

)(

ar
t

)

−
(

a1
t

)(

ar
s

)

,

B =

(

a1 + 1

s

)(

ar − 1

s

)

−
(

a1
s

)(

ar
s

)

.

Using the formula
(a1+1

x

)(ar−1
y

)

= a1+1
a1+1−x · ar−y

ar
·
(a1
x

)(ar
y

)

, one can derive that

∆g(~a)
∏r

i=1

(ai
s

) =
sar − t(a1 + 1)

(a1 + 1− s)ar

(ar
t

)

(ar
s

) +
tar − s(a1 + 1)

(a1 + 1− t)ar

(a1
t

)

(a1
s

) +
s(ar − a1 − 1)

(a1 + 1− s)ar

r−1
∑

i=2

(ai
t

)

(ai
s

) .

Now it follows easily by h(~a) = art!
s!
∏r

i=1 (
ai
s )

and the formula
(ai
t

)

= s!
t!

(ai
s

)

(ai − s)q.

For reals x > 0, α ≥ 0 and an integer k ≥ 1, let (x)k =
∏k−1

i=0 (x − i) and H(x, α) =
H1(x, α) +H2(x, α) +H3(x, α), where



































H1(x, α) =

(

sα− q − qs+ t

x

)(

1 +
1− q

x

)

(x+ αx)q
xq

,

H2(x, α) =

(

tα+ q +
qs− s

x

)(

1 +
1

x

)

(x)q
xq

,

H3(x, α) = (r − 2)s

(

α− 1

x

)(

1 +
1− q

x

)

(x)q
xq

.

Proposition 6.9. Let x̂ = a1 − s and α̂ = ar−a1
a1−s . If ar ≥ a1 + 1, then H(x̂, α̂) ≤ 0.

Proof. Assume that ar ≥ a1 + 1. Let p(x) = xq+2

(x+1)(x+1−q) . We first show that

h(~a)∆g(~a) ≥ H(x̂, α̂) · p(x̂). (18)

One can rewrite the first two terms of h(~a)∆g(~a) in Proposition 6.8 as the following

sar − t(a1 + 1)

a1 + 1− s
(ar − s)q =

(sα̂x̂− qx̂− qs− t)(x̂+ α̂x̂)q
x̂+ 1

= H1(x̂, α̂) · p(x̂),

tar − s(a1 + 1)

a1 + 1− t
(a1 − s)q =

(tα̂x̂+ qx̂+ qs− s)(x̂)q
x̂+ 1− q

= H2(x̂, α̂) · p(x̂).

Thus to prove (18), it suffices to show that the third term of h(~a)∆g(~a) in Proposition 6.8

is at least H3(x̂, α̂)p(x̂). Indeed, since
s(ar−a1−1)
a1+1−s ≥ 0 and

∑r−1
i=2 (ai−s)q ≥ (r−2)(a1−s)q =

(r − 2)(x̂)q, this follows by
s(ar−a1−1)
a1+1−s

∑r−1
i=2 (ai − s)q ≥ (r−2)s(α̂x̂−1)(x̂)q

x̂+1 = H3(x̂, α̂) · p(x̂).
Next we use (18) to show H(x̂, α̂) ≤ 0. Since n is sufficiently large and a1 ≥ γn (by

Proposition 6.7), it holds that p(x̂) = p(a1 − s) > 0 and h(~a) > 0; also by Proposition 6.6,
we have ∆g(~a) ≤ 0. Therefore one can easily derive from (18) that H(x̂, α̂) ≤ 0.

We also need the following properties on H(x, α), whose technical proofs can be found
in Appendix B.
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Proposition 6.10. (i) For any fixed C > ε > 0, there exists x0 such that the following
holds. If x ≥ x0 and C ≥ α ≥ ε, then H(x, α) > 0.

(ii) If t < s + 1
2 +

√

2s+ 1
4 , then there exist ε0 and x1 such that the following holds. If

x ≥ x1 and ε0 ≥ α ≥ 2
x , then H(x, α) > 0.

Now we can finish the proof of Lemma 5.3.

Proof of Lemma 5.3. By Proposition 6.7, there exists some γ > 0 such that a1 ≥ γn. Let
n be sufficiently large, x̂ = a1 − s, and α̂ = ar−a1

a1−s .
First we prove that ar − a1 = o(n), which would imply that ai = n/r+ o(n). Suppose

to the contrary that ar − a1 ≥ εn for some ε > 0. As n is sufficiently large, it follows that
2/γ ≥ α̂ ≥ ε. Let x0 be obtained from Proposition 6.10 (i) by applying with C = 2/γ and
ε. Since x̂ = a1 − s ≥ γn − s ≥ x0, by Proposition 6.10 (i) we get H(x̂, α̂) > 0, which
contradicts Proposition 6.9.

Next we assume t < s+ 1
2 +

√

2s + 1
4 and aim to show that G = Tr(n), or equivalently

ar − a1 ≤ 1. Assume that ar − a1 ≥ 2. Let ε0 and x1 be obtained from Proposition 6.10
(ii). As we just prove ar − a1 = o(n), for sufficiently large n we have ar − a1 ≤ γε0

2 n. This
implies that ε0 ≥ α̂ ≥ 2

x̂ . Also we have x̂ ≥ γn − s ≥ x1, so by Proposition 6.10 (ii), we
obtain H(x̂, α̂) > 0, again a contradiction to Proposition 6.9. Now the proof of Lemma
5.3 is completed.

7 Concluding remarks

In this paper we consider the generalized Turán numbers ex(n, T,H) for graphs T,H with
χ(T ) < χ(H). In the case that T is a clique, Theorem 1.2 gives a sharp estimate. A
natural question will be to consider for non-clique T . Theorem 5.1 provides some answers
for complete multipartite graphs T . However, even for this case there lacks of evidences
to speculate extremal graphs in general. A special problem which we encounter with is

that if, for (T,H) = (Ks,t,K3) and t ≥ s+ 1
2 +

√

2s+ 1
4 , the extremal graphs are always

bipartite. If this is the case then one may expect to solve the problem similar as in Lemma
5.3. It also seems plausible to ask the extremal graphs for ex(n, T,Kr) for edge-critical
graphs T (in particular, for ex(n,C2k+1,Kr) where r ≥ 4). Our attempt to generalize
Theorem 5.1 is limited by our capability of computation, therefore it will be interesting
to see if there exists some novel approach which can work for general problems.
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[14] Z. Füredi, A. Kostochka and R. Luo, Extensions of a theorem of Erdős on nonhamil-
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A Proofs of Propositions 6.4 and 6.5

We begin by defining some functions: (let q = t− s and 1/C = (s!)r−1t!(r − 1)(r−2)s+t−1)

∆(a) = (F (a+ 1)− F (a))/λs,t , M(a) = Ca(r−2)s+t(n− a)s−2 , and

H(z) = sλs,t(sλ̃s,t,r−1 + t)z − (s2 − s)λ̃s,t,r/(r− 1) + st(r− 1)qzq+1 − (t2 − t)(r− 1)q−1zq.

First we will need to prove the following two claims.

Claim A.1. For γn ≤ a ≤ (1− ε)n, it holds for sufficiently large n that ∆(a) = M(a) ·
[

H
(

n−a
a

)

+ o(1)
]

, where o(1) tends to 0 as n goes to infinity.

Proof. We need to compute ∆(a). Write N1(a) = N (Tr−1(a),K
(r−1)
s,t ) and N2(a) =

N (Tr−1(a),K
(r−1)
s,s ). By the definition of the function F , we have

F (a)

λs,t
=

(

n− a− 1

s− 1

)

N1(a) +

(

n− a− 1

t− 1

)

N2(a), (19)

By (12), N1(a+1) = N1(a)+ δ1 and N2(a+1) = N2(a)+ δ2, where δ1 = Fr−1,s,t(⌊ r−2
r−1 (a+

1)⌋, a + 1) and δ2 = Fr−1,s,s(⌊ r−2
r−1 (a+ 1)⌋, a + 1). So we can obtain that

F (a+ 1)

λs,t
=

(

n− a− 2

s− 1

)

(N1(a) + δ1) +

(

n− a− 2

t− 1

)

(N2(a) + δ2). (20)

By (19) and (20), it follows that

∆(a) =

(

n− a− 2

s− 1

)

δ1 −
(

n− a− 2

s− 2

)

N1(a) +

(

n− a− 2

t− 1

)

δ2 −
(

n− a− 2

t− 2

)

N2(a).

Applying Propositions 6.1 and 6.2 to N1(a), N2(a), δ1 and δ2, one can derive that

∆(a) = (n− a)s−1
[

λs,t(sλ̃s,t,r−1+t)
(s−1)!(s!)r−2t!

+ o(1)
] (

a
r−1

)(r−2)s+t−1

−(n− a)s−2
[

λ̃s,t,r

(s−2)!(s!)r−2t! + o(1)
] (

a
r−1

)(r−2)s+t

+(n− a)t−1
[

s
(t−1)!(s!)r−1 + o(1)

] (

a
r−1

)(r−1)s−1

−(n− a)t−2
[

1
(t−2)!(s!)r−1 + o(1)

] (

a
r−1

)(r−1)s
.
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Let z = n−a
a . After some simplifications, one can obtain that

∆(a) = Ca(r−1)s+t−2 ·
[

sλs,t(sλ̃s,t,r−1 + t)zs−1 − s(s−1)λ̃s,t,r

r−1 zs−2 + st(r − 1)qzt−1

−(t2 − t)(r − 1)q−1zt−2 + o(1)
]

= M(a) · [H(z) + o(1)].

This proves Claim A.1.

Claim A.2. H(z) is strictly increasing in [ 1
r−1 ,+∞) and H( 1

r−1) ≥ 0. Moreover, H( 1
r−1) =

0 if and only if r = 2 and t = s+ 1
2 +

√

2s+ 1
4 .

Proof. If t = s, then H(z) = s · 1
2(s + s)z − s2−s

r−1 + s2z − s2−s
r−1 = 2s2

(

z − 1
r−1 + 1

s(r−1)

)

.

It is obvious that H( 1
r−1) > 0 and H(z) is strictly increasing.

Next we consider s < t ≤ s + 1
2 +

√

2s+ 1
4 . Then q ≥ 1 and 2s + q − q2 ≥ 0, where

2s + q − q2 = 0 if and only if t = s+ 1
2 +

√

2s+ 1
4 . In this case we have

H(z) = (s2(r − 2) + st)z − (s2 − s) + st(r − 1)qzq+1 − (t2 − t)(r − 1)q−1zq. (21)

This implies that H
(

1
r−1

)

= sr+q−q2

r−1 ≥ 0, where the equality holds if and only if r = 2

and t = s+ 1
2 +

√

2s+ 1
4 . It remains to show H(z) is strictly increasing in [ 1

r−1 ,+∞). To

do so, it suffices to prove H ′(z) is strictly increasing in [ 1
r−1 ,+∞) and H ′( 1

r−1) ≥ 0.
By (21), one can obtain

H ′(z) = s2(r − 2) + st+ st(r − 1)q(q + 1)zq − (t2 − t)(r − 1)q−1qzq−1, (22)

H ′′(z) = tq(r − 1)q−1zq−2[s(r − 1)(q + 1)z − (t− 1)(q − 1)]. (23)

So for z > 0, H ′′(z) ≥ 0 is equivalent to that h(z) := s(r− 1)(q +1)z − (t− 1)(q − 1) ≥ 0.

Since h(z) is strictly increasing and h
(

1
r−1

)

= (2s + q − q2) + (q − 1) ≥ 0, we infer

that h(z) > 0 for z > 1
r−1 . This also yields that H ′′(z) > 0 for z > 1

r−1 . Therefore

H ′(z) is strictly increasing in [ 1
r−1 ,+∞). Lastly, it follows from (22) that H ′

(

1
r−1

)

=

(r − 2)s2 + t(2s + q − q2) ≥ 0. Now the proof of Claim A.2 is completed.

We are ready to prove Propositions 6.4 and 6.5.

Proof of Proposition 6.4. We will only prove the case (i), and the case (ii) can be proved

analogously. Suppose that t < s + 1
2 +

√

2s + 1
4 . Observe that in this case H( 1

r−1 ) > 0.

We need to show ∆(a) > 0 for all a ∈ [γn, ⌊ r−1
r n⌋]. Let z = n−a

a . Then z ∈ [ 1
r−1 ,

1−γ
γ ].

By Claims A.1 and A.2, it holds for sufficiently large n that ∆(a)
M(a) = H(z) + o(1) ≥

H
(

1
r−1

)

+ o(1) > 0. Since M(a) > 0, this proves ∆(a) > 0.

Proof of Proposition 6.5. Let β = r−1
r − ε and C̃ = λs,t ·C. By the definition of ∆(a) and

Claim A.1, we see that F
(⌊

r−1
r n

⌋)

− F
(⌊(

r−1
r − ε

)

n
⌋)

equals

λs,t ·
⌊ r−1

r
n⌋−1

∑

a=⌊βn⌋
∆(a) = λs,t ·

⌊ r−1

r
n⌋−1

∑

a=⌊βn⌋
M(a)

[

H

(

n− a

a

)

+ o(1)

]

, (24)
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where λs,t ·M(a) = C̃a(r−2)s+t(n − a)s−2. Then the equation (24) becomes

C̃

⌊ r−1

r
n⌋−1

∑

a=cn

a(r−2)s+t(n− a)s−2H

(

n− a

a

)

+ o(n(r−1)s+t−1).

We use Riemann integral to estimate the above summation as following

1

n(r−1)s+t−1
·
⌊ r−1

r
n⌋−1

∑

a=⌊βn⌋
a(r−2)s+t(n− a)s−2H

(

n− a

a

)

=

⌊ r−1

r
n⌋−1

∑

a=⌊βn⌋

[

(a

n

)(r−2)s+t
(

n− a

n

)s−2

H

(

n− a

a

)

· 1
n

]

n→∞−−−−→
∫ r−1

r

β
x(r−2)s+t(1− x)s−2H

(

1− x

x

)

dx =

∫ 1

β
−1

1

r−1

zs−2H(z)

(1 + z)(r−1)s+t
dz.

Let I denote the above integral. By Claim A.2, H(z) > 0 for z ∈ ( 1
r−1 ,

1
β − 1). So

I > 0. Putting everything together, one can obtain that F
(⌊

r−1
r n

⌋)

−F
(⌊(

r−1
r − ε

)

n
⌋)

=

(C̃I + o(1)) · n(r−1)s+t−1. Let ξ = C̃I
2 > 0. Then it holds for sufficiently large n that

F
(⌊

r−1
r n

⌋)

− F
(⌊(

r−1
r − ε

)

n
⌋)

> ξn(r−1)s+t−1. This proves Proposition 6.5.

B Proof of Proposition 6.10

First we prove two claims. Let q = t− s and f(z) = (sz − q)(1 + z)q + (t+ (r− 2)s)z + q.

Claim B.1. There exists a polynomial P (α) with P (0) = 0 such that the following holds.
For any fixed C > 0, if α ∈ [0, C], then H(x, α) = f(α)+ (q2− q− rs+P (α))/x+O(x−2),
where the absolute value of the constant term in O(x−2) is bounded by C, r, s and t.

Proof. Recall that H(x, α) =
∑3

i=1Hi(x, α). So we need to estimate each Hi.
Let C > 0 be fixed and α ∈ [0, C]. Write (z)q = zq+Azq−1+g(z), where g(z) is a poly-

nomial of degree at most q−2. Then we have (x+ αx)q = (1+α)qxq+A(1 + α)q−1xq−1+
O(xq−2). From the definition of H1 it follows that

H1(x, α) =

(

sα− q − qs+ t

x

)(

1 +
1− q

x

)[

(1 + α)q +
A(1 + α)q−1

x
+O(x−2)

]

.

Expanding this multiplication, since α ∈ [0, C] is bounded, we obtain H1(x, α) = (sα −
q)(1+α)q+ P̃1(α)/x+O(x−2), where P̃1(α) = −(qs+ t)(1+α)q+(sα−q)(1−q)(1+α)q +
(sα− q)A(1+α)q−1. Define P1(α) = P̃1(α)− P̃1(0), which is a polynomial with P1(0) = 0.
Then we have

H1(x, α) = (sα− q)(1 + α)q +
−(qs+ t)− q(1− q)− qA+ P1(α)

x
+O(x−2).

By similar arguments one can write H2 and H3 as

H2(x, α) = tα+ q +
qs− s+ q + qA+ P2(α)

x
+O(x−2),

H3(x, α) = (r − 2)sα+
−(r − 2)s + P3(α)

x
+O(x−2),

where Pi is a polynomial with Pi(0) = 0 for i ∈ {2, 3}. Summing up the above we obtain

H(x, α) = f(α) +
q2 − q − rs+ P (α)

x
+O(x−2),

where P (α) =
∑3

i=1 Pi(α) is a polynomial with P (0) = 0. This proves Claim B.1.
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Claim B.2. The function f(z) is strictly increasing in [0,+∞) with f(0) = 0 and f ′(0) =
sr + q − q2.

Proof. It is easy to verify f(0) = 0 and obtain

f ′(z) = s(q + 1)(1 + z)q − tq(1 + z)q−1 + t+ (r − 2)s,

f ′′(z) = q(1 + z)q−2[s(q + 1)z + 2s + q − q2].

So f ′(0) = sr + q − q2. Next we show f(z) is strictly increasing. If q = 0, then f(z) =
sz + (t+ (r − 2)s)z = rsz, which is obviously increasing. So we may assume q ≥ 1. Since

s ≤ t ≤ s+ 1
2 +

√

2s+ 1
4 , we have 2s+ q− q2 ≥ 0. This shows that f ′(0) = sr+ q− q2 ≥ 0

and f ′′(z) > 0 for z > 0, implying that f ′(z) > f ′(0) ≥ 0 for z > 0 and thus f(z) is strictly
increasing in [0,+∞). This completes the proof.

We are ready to prove Proposition 6.10

Proof of Proposition 6.10. First, we consider the case (i). Suppose that C > ε > 0 are
fixed and α ∈ [ε, C]. By Claim B.1 there exists a polynomial P (α) such that H(x, α) =
f(α) + (q2 − q − rs + P (α))/x + O(x−2). By Claim B.2 we have f(α) ≥ f(ε) > 0. Since
|P (α)| is bounded (as α ∈ [ε, C]), there exists a large x0 > 0 such that for x ≥ x0

|H(x, α)− f(α)| =
∣

∣

∣

∣

q2 − q − sr + P (α)

x
+O(1/x2)

∣

∣

∣

∣

≤ 1

2
f(ε).

Now it follows that H(x, α) ≥ f(ε)− 1
2f(ε) > 0.

Next we consider the case (ii). We have s ≤ t < s + 1
2 +

√

2s+ 1
4 , which shows that

2s+q−q2 > 0. By Claim B.2, f(0) = 0 and f ′(0) = rs+q−q2 ≥ 2s+q−q2 > 0. So there

exists ε1 > 0 such that for α ∈ (0, ε1] it holds that |f(α)α − f ′(0)| ≤ f ′(0)/5. This implies
that f(α) ≥ 4f ′(0)α/5 for α ∈ [0, ε1]. Also since P (α) is a polynomial with P (0) = 0,
there exists ε2 > 0 such that for α ∈ [0, ε2], |P (α)| ≤ f ′(0)/4. Applying Claim B.1 with C
being ε0 = min{ε1, ε2}, for α ∈ [0, ε0] we have

H(x, α) = f(α) +
P (α) − f ′(0)

x
+O(x−2) ≥ 4f ′(0)α

5
− 5f ′(0)

4x
− D

x2
,

where D > 0 is bounded by ε0, r, s, t. Let x1 = 4D/f ′(0). Then for x ≥ x1 and α ∈ [ 2x , ε0],

H(x, α) ≥ 4f ′(0)α
5

− 5f ′(0)
4x

− f ′(0)
4x

=

(

4

5
α− 3

2x

)

f ′(0) ≥ f ′(0)
10x

> 0.

This completes the proof of Proposition 6.10.
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